What Table Representation Learning Brings to Data Systems

Madelon Hulsebos

ETH Zürich 5 December 2024

The Impressive Capabilities of Transformers

Transformer-architecture leveraged for applications over images, text, code:

Generating funny dog images

🚺 You what to include in speech with PhD graduation committee after defense ceremony? ChatGP1 After successfully defending your PhD dissertation, it's customary to give a speech to expres gratitude and appreciation to your graduation committee and others who throughout your academic journey. Here's what you might want to include in your speech Acknowledgment of the Committee: Begin by thanking each member of your graduation committee individually, mentioning their contributions to your research and their guidance during the defense process Express Gratitude: Express your sincere gratitude to your advisor, committee member entors colleagues friends and family for their support encouragement and assistance throughout your PhD journey Reflect on the Journey: Reflect briefly on your academic journey highlighting key milestoney challenges you've overcome, and significant moments of growth and learnin Highlight Contributions: Summarize the main contributions of your research and its potentia impact in your field or related areas. This is an opportunity to showcase the significance of vo work and its relevance

Writing graduation speech

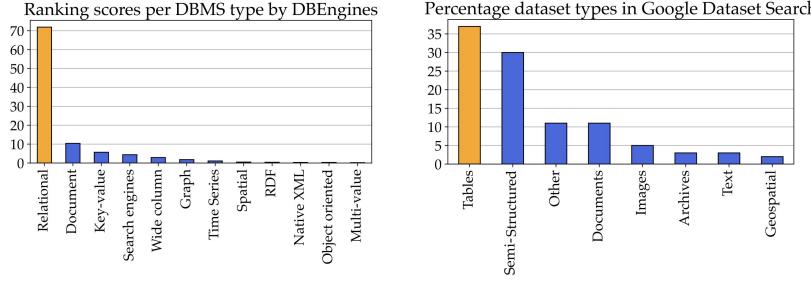
🖬 sentiment.ts				
	n/env ts-node			
		h-h2";		
	ction isPositive(t	ext: string): P	comise <boolean></boolean>	
8 const a				
9 metho				
10 body				
11 heade				
12 "Co				
13 },				
14 });				
17 }				
8 Copilot				

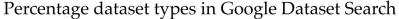
Completing code

What about tables?

We have LLMs... why not analyze docs?

Tables Dominate the Data Landscape

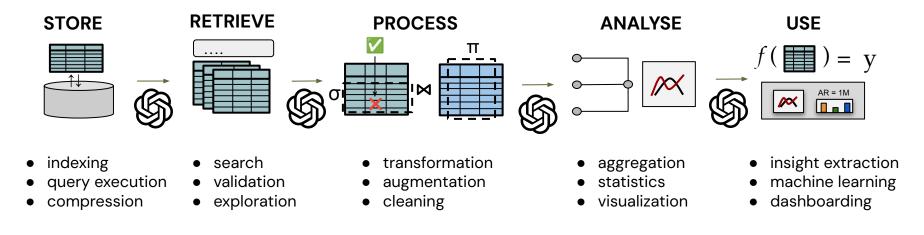




Potential of Table Representation Learning

Available... but also: fresh, structured, domain, data!

High value use-cases, e.g. data analysis: many tables, many tasks!



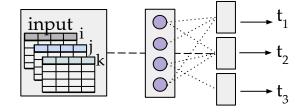
Relational data: rich and challenging

Diverse in dimensions, structure, cleanliness and semantics...

N	r	ID	seed rate	yield	crop	cultivar	рге сгор	рге-рге сгор	pre-pre-pre	soil type	precipita	tempera	comment	1
	1	68		91	winter wheat		sugar beets	beans		sandy loam, loe	636	9,6	wb, sg,	1
	2	68		100	winter wheat		sugar beets	rotation fallow		sandy loam, loe	636	9,6	cultivation	
	3	68		97	winter wheat		sugar beets	fallow land (5,5y)		sandy loam, loe	636	9,6	1993-1996	
	4	136		95	winter wheat		oats	sugar beets		sandy loam, loe	636	9,6		
	5	136		96	winter wheat		potatos	sugar beets		sandy loam, loe	636	9,5	cultivation	
	6	136		107	winter wheat		sugar beets	maize		sandy loam, loe		9,5	1991-1994	
	7	136		107	winter wheat		sugar beetsn	summer wheat	maize	sandy loam, loe		9,5		
	8	136		82	winter wheat		oats	sugar beets	sugar beets	sandy loam, loe	636	9,5	organic	
	9	136		77	winter wheat		potatos	sugar beets		sandy loam, loe	636	9,5	organic	
1	0	136		85	winter wheat		sugar beets	maize	maize	sandy loam, loe	636	9,5	organic	
1	1	136		84	winter wheat		sugar beets	summer wheat	sugar beets	sandy loam, loe	636	9,5	organic	
1	2	57	371	98	winter wheat	Sperber	sugar beets	winter barley	winter wheat	sandy loam, loe	635		wb, ww	
1	3	57	365	98	winter wheat	Sperber	potatos	sugar beets	summer barle	sandy loam, loe	635		cultivation, weed	
1	4	57	365	105	winter wheat	Sperber	sugar beets	maize	maize	sandy loam, loe	635		1987-1992	
1	5	57	365	97	winter wheat	Sperber	sugar beets	winter wheat	sugar beets	sandy loam, loe	635			
1	6	39	433	90	winter wheat	Okapi	summer barley			sandy loam, loe	690	8,5	oats, cultivation, week	c
1	7	39	433	100	winter wheat	Okapi	oats			clay, silt	690	8,5	1982-1986	
1	8	39	433	97	winter wheat	Okapi	winter wheat			clay, silt	690	8,5	1	

	2019			de	ta				
	Profit	Quantity	Sales	Qua	ntity	Sa	les	Pr	ofit
4 Overall	128.9k	13.3k	1.0m	-	36.5%		06.2%		
P France	35.1k	3.9k	308.4k		33.0%		33.2%		0.7%
P Austria	7.5k	299.0	24.6k		10.3%		11.9%		
✓ Belgium	4.2k	202.0	17.3k		23.2%		82.7%		90.0
⊿ Denmark	-1.3k	86.0	2.8k		4.9%	-21.1%			22.9
P Zealand	-245.0	15.0	242.7						
⊿ South Denmark	-362.9	40.0	1.3k		22.2%	-7.7%			
Sonderborg	-45.4	6.0	87.5						
Odense	-280.3	30.0	1.1k		0.0%	-20.1%			5
Esbjerg	-37.3	4.0	88.7						
⊿ Hovedstaden	-0.7k	31.0	1.3k	40.4%		-40.9%			
Copenhagen	-0.7k	31.0	1.3k		0.0%	-29.5%			2
Frederiksberg	232.1	11.0	1.1k						
P Finland	36.0k	2.4k	216.5k	-79.6% -		-81,4%		-86.2%	
P Germany	-3.9k	152.0	7.2k		15.0%		46.0%		- 32
P Ireland	10.6k	1.4k	109.7k		17.8%		101.0%	-152.5% -	
P Italy	-11.6k	0.6k	23.7k		07.5%		37.2%		57.6%
P Netherlands	2.9k	135.0	12.9k		46.0%		12.0%		2.5%
P Norway	-1.0k	74.0	1.8k		- 229.3%		230.8%		- 162.0
P Portugal	20.6k	1.2k	99.1k	-29.5%		-79.2%			82.45
P Spain	-9.4k	360.0	15.6k		46.7%		12.9%		27.1
₽ Sweden	2.2k	84.0	7.3k		143.2%		167.7%	-128.7%	
P Switzerland	36.8k	2.4k	194.0k		5.0%	25.0%		-29.1%	
⊿ United Kingdom	1.3k	48.0	4.0k		60.4%		56.4% =		
P Wales	1.9k	118.0	6.6k	-5.9%		-30.2%		28.7%	1
P Scotland	33.6k	2.2k	183.4k		0.9%	64.6		80.51	

Goal TRL: map tables to some consistent input. Learn some representation that helps detect patterns relevant to given task(s).



Today...

¹ The power of table and column **semantics**

² What we need to **make TRL work**

³ Towards **end-to-end data analysis** tools

The power of table and column semantics

Essential understanding of a table comes through its columns.

Semantic column types: what and why?

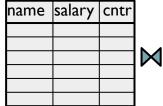
name salary country

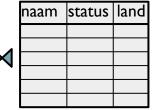
nar	ne	sal	ary	CI	ntr

Looks easy, but....

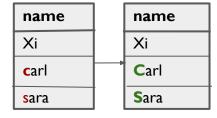
- Undescriptive header?
- Messy values?
- Diverse data types?

Semantic column types dictate operations *sensible* to perform on them:



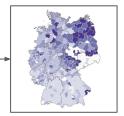


Join tables on "name" and "country" columns



Capitalize "name" columns

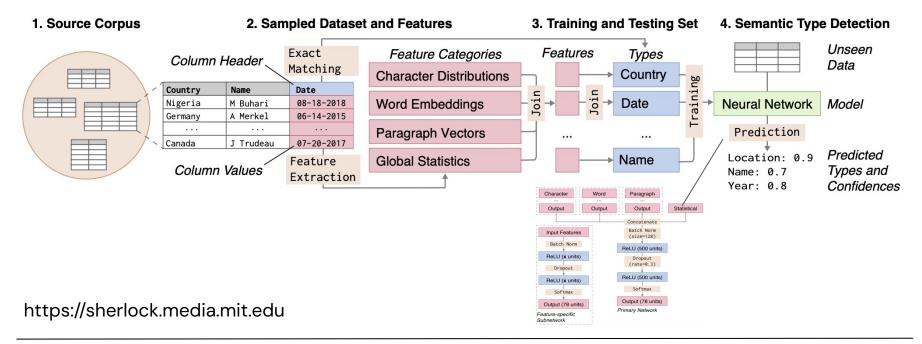
name	salary	cntr	



Plot "country" data

Sherlock: Column Type Detection with DL

Prior: string matching (header/values) w/ regex or dict: robust? scale? accurate?



How well does Sherlock detect types?

78 semantic types (name, address, etc).

Method	F ₁ Score	Runtime (s)	Size (Mb)
	Machine Lear	ning	
Sherlock	0.89	0.42 (±0.01)	6.2
Decision tree	0.76	0.26 (±0.01)	59.1
Random forest	0.84	0.26 (±0.01)	760.4
	Matching-ba	ised	
Dictionary	0.16	0.01 (±0.03)	0.5
Regular expression	0.04	0.01 (±0.03)	0.01
Cr	owdsourced An	notations	
Consensus	0.32 (±0.02)	33.74 (±0.86)	

Examples of misclassifications.

Examples	True type	Predicted type
Lo	w Precision	
81, 13, 3, 1	Rank	Sales
316, 481, 426, 1, 223	Plays	Sales
\$, \$\$, \$\$\$, \$\$\$\$, \$\$\$\$\$	Symbol	Sales
L	ow Recall	
#1, #2, #3, #4, #5, #6	Ranking	Rank
3, 6, 21, 34, 29, 36, 54	Ranking	Plays
1st, 2nd, 3rd, 4th, 5th	Ranking	Position

Challenges

- Numeric data
- Non-mutually exclusive types

Don't we have LLMs now?

"Table-tuned" LLM (but not for semantic type detection) [1]:

Zer	o-Shot	Few-Shot		
GPT-3.5	+table-tune	GPT-3.5	+table-tune	
0.332	0.449	0.528	0.538	

Sherlock model: ~0.88 F1.

LLM (GPT-3.5) w/ more examples and specific context [2]:

	F_1 -score	Precision	Recall
DoDuo-VizNet*	0.876	89.4%	87.2%
Sherlock*	0.954	96.2%	94.6%
TaBERT	0.321	32.6%	32.0%
DoDuo-Wiki	0.440	59.2%	45.4%
CHORUS	0.891	91.2%	88.8%

Sure, GPT-x might do better..

but w/ billions of params vs thousands!

Representation Learning (LM trained on type detection) [3]:

Method	F1	Р	R
Sherlock (only entity mention) [17]	78.47	88.40	70.55
TURL + fine-tuning (only entity mention)	88.86	90.54	87.23
TURL + fine-tuning	94.75	94.95	94.56
w/o table metadata	93.77	94.80	92.76
only table metadata	90.24	89.91	90.58

[1] TableGPT: Table-tuned gpt for diverse table tasks. P. Li et al, VLDB, 2024

[2] CHORUS: Foundation Models for Unified Data Discovery and Exploration. Kayali, et al. VLDB, 2024.

[3] TURL: Table understanding through representation learning. Xiang Deng, et al., ACM SIGMOD Record, 2022.

Semantics for optimizing data systems

Bernhard Radke

Technical University of Munich

radke@in.tum.de

Example: column semantics -> correlations.

Cardinality estimation

Learned Cardinalities: Estimating Correlated Joins with Deep Learning

Andreas Kipf Technical University of Munich kipf@in.tum.de Thomas Kipf University of Amsterdam t.n.kipf@uva.nl

Viktor Leis Technical University of Munich leis@in.tum.de t.n.kipf@uva.nl Peter Boncz Centrum Wiskunde & Informatica

Peter Boncz Alfons Kemper Wiskunde & Informatica boncz@cwi.nl kemper@in.tum.de

Compression

Lightweight Correlation-Aware Table Compression

Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif Grabocka, Andreas Kipf {mihail.stoian, alexander.van.renen, jan.kobiolka, ping-lin.kuo, josif.grabocka, andreas.kipf}@utn.de University of Technology Nuremberg

Can Large Language Models Predict Data Correlations from Column Names?

Immanuel Trummer Cornell Database Group Ithaca, NY, USA itrummer@cornell.edu

What we need to make TRL work

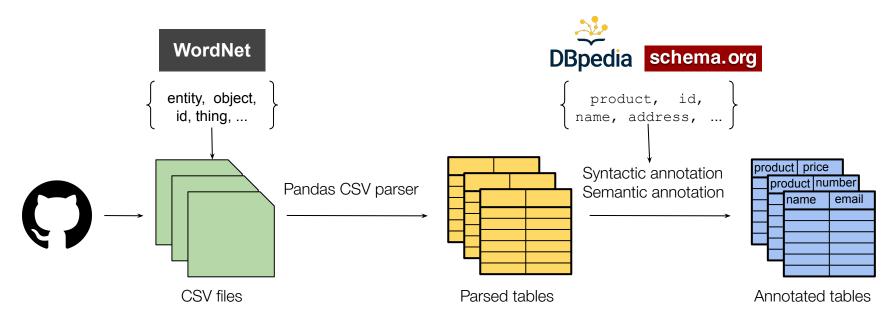
As LLM scaling laws reach their limits: it is all about the "quality" of the data, and the "tricks" we apply.

What **Data** Do We Need?

- Web/WikiTables \rightarrow Web applications. Web tables * DB tables...
- Data tasks on offline tables? GitHub as a data source?

	extension	n:"csv" "id"	/ Pull	requests Issues Marketplace Explore
Commits 504M+				
Issues 10M Discussions 50K 1 Rider Id, No. 0f_Orders, Age, Average Rating, No. of_Ratings				data/Riders.csv
Packages 2 Rider 1d 396,2946,2298,14,1159 Marketplace 3 Rider_Id_479,360,951,13.5,176 4 Rider_Id_648,1746,821,14.3,466				2 Rider 1d 396,2946,2298,14,1159 3 Rider_1d_479,360,951,13.5,176 4 Rider_1d_648,1746,821,14.3,466
Topics 2K 5 Rider_Id_753,314,980,12.5,75 6 Rider_Id_335,536,1113,13.7,156 Wikis 598K CSV Showing the top six matches Last indexed on 27 Mar 2021				6 Rider_Id_335,536,1113,13.7,156

GitTables: a new large corpus with tables



https://gittables.github.io

Using GitTables

- >1M tables and 800K CSV files.
- Wider+taller, and lots of IDs; more representative.
- Useful for semantic column type detection and schema completion:

Header prefix Suggested completion

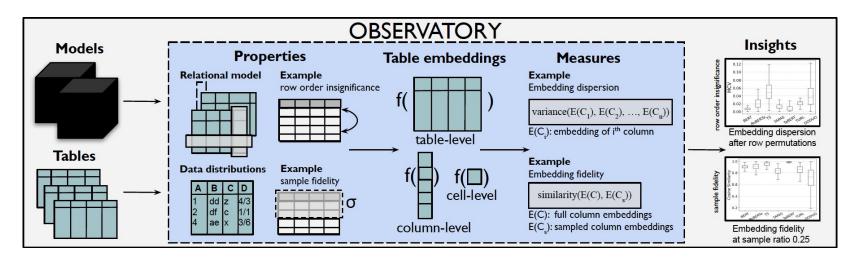
payment_id, customer_idreview_id, product_id, product_parent, product_title, ...id, companyReceivablePaymentHeader, ReceivablePayment, Status, Customer, BankEntity, ...id, name, locationphone, email, uid, active, ad_organization_id, ...

Used for join discovery, CSV parsing, KG enhancement, retrieval eval, etc. Other corpora to bridge the "realism gap" e.g. **SchemaPile**, **BIRD**, **Spider**.

Do 'tableLM' **tricks** capture relational properties?

Tables ≠ natural language

Studying neural table embeddings through Codd's relational model.



Observatory: Characterizing Relational Table Embeddings. Cong, <u>Hulsebos</u>, Sun, Groth, Jagadish, VLDB, 2024.

Example Property: Functional Dependencies

Given table with FD: X=country \rightarrow Y=continent

We argue that:

- FD relations interpretable as *translation* between embeddings $E(\pi X(s))$ and $E(\pi Y(s))$

ID	name	country	continent
1	Kathryn	Netherlands	Europe
2	Oscar	Netherlands	Europe
3	Lee	Canada	North America
4	Roxanne	USA	North America
5	Fern	Netherlands	Europe
6	Raphael	USA	North America
7	Rob	USA	North America
8	Ismail	Canada	North America

- Model preserves FD if $d(E(\pi X(s)), E(\pi Y(s))) = d(E(\pi X(t)), E(\pi Y(t)))$ where d preserves magnitude+direction (L1/L2-norm).
- Intuitively:

$$d_1$$
 Europe
Netherlands d_2 Europe
Netherlands

Current Architectures Often Fall Short...

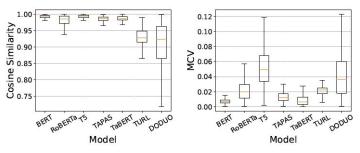
Turns out, most models do not preserve FDs!

RM [4] also has straightforward properties:

A *relation* then consists of a set of tuples, each tuple having the same set of attributes. If the domains are all simple, such a relation has a tabular representation with the following properties.

- (1) There is no duplication of rows (tuples).
- (2) Row order is insignificant.
- (3) Column (attribute) order is insignificant.
- (4) All table entries are atomic values.

Measure by avg cosine similarity of col embeddings across row permutations.



row order robustness

Impact downstream tasks: row shuffling affects 34% semantic column types!

Towards end-to-end data analysis systems

End-to-end DS goes far beyond "automl"

즈	Data Science A	gent Experiment
	🛱 README.md	8 Playground

2018_Central_Park_Squirrel_Census_-_Squirrel_Data_20240501.csv

Analyze the proportion of adult and juvenile animals in the census data. Are there any spatial patterns in age distribution?

2018_Central_Park_Squirrel_Census_-_Squirrel_Data_20240501.csv

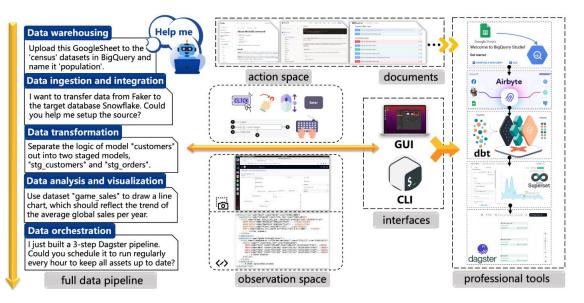
Plan

V

Typically lots of text-to-code (e.g. SQL) involved!

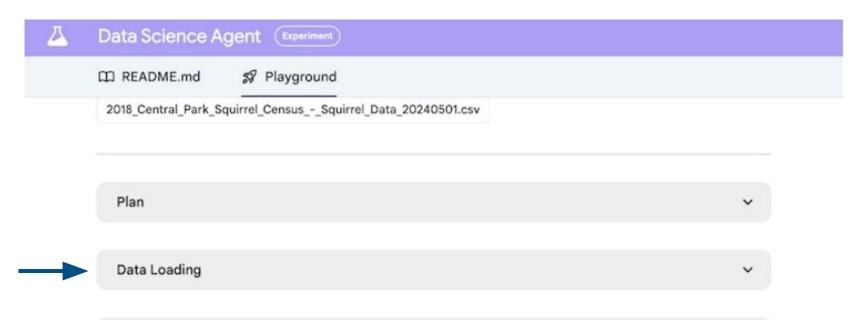
From DS codegen to DS GUI agents

Spider2-V Framework Infrastructure



Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? Ruisheng Cao, et al., NeurIPS Datasets & Benchmarks 2024

Sounds cool, how do we get there?



Who or what is doing data analysis, it will need the right data first.

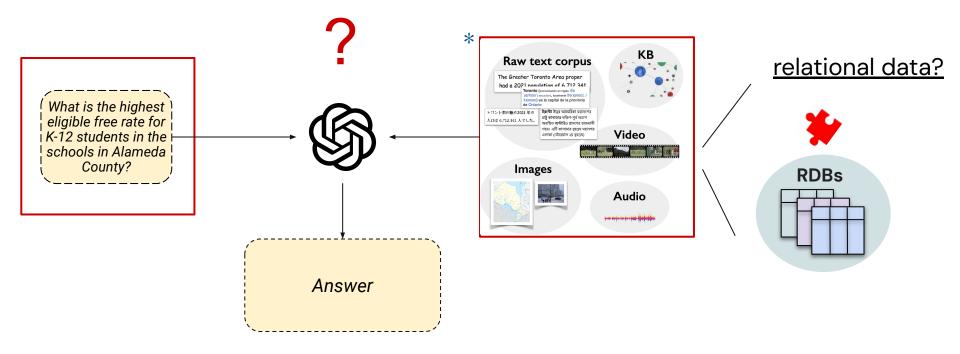
Finding the right data for basic questions or deep analysis is *still* not easy.

Asking LLMs complex questions

What is the highest eligible free rate for K-12 students in the schools in Alameda County?

".... To determine the highest free rate specifically in Alameda County schools, **you'd generally need data from specific school districts or schools in the area**, as this rate can vary widely depending on the socio-economic demographics of each district. ..." *

We need "specific" data to ground LLMs



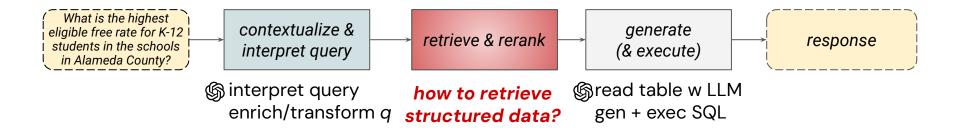
Retrieval-based Language Models and Applications, Asai et al, Tutorial ACL, 2023.

Queries & RAG pipeline

"Which urban Japanese prefecture is not associated with thorny trees?" [table lookup]

"Shane Hall ran a total of 190 races between the year of 1995 - 2008" [aggregate & compare]

"What is the highest eligible free rate for K-12 students in the schools in Alameda County" [aggregate]



Retrieval is difficult, but crucial...

".. keep in mind that a good RAG system is really hard to build.

If your **retrieval system is mediocre**, the **retrieval can easily distract LLMs**...

There is still a long way to go." - Wenhu Chen (Univ of Waterloo)

Methods for table retrieval

(I) Embed tables in corpus

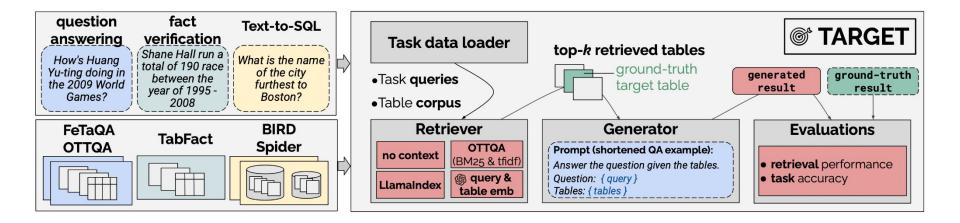
- BM25 / TF-IDF (sparse lexical representations)
- Generate summary/metadata \rightarrow embed summary + table
- "Naive" embedding of table (header / header+rows) and query

2 Embed query

(3) Similarity search (e.g. cosine similarity) to identify top-k relevant tables

But how effective are these? How robust across datasets and tasks? No one really knows!

TARGET: Benchmarking <u>Table Retrieval for Generative Tasks</u>



https://target-benchmark.github.io (pip install target benchmark)

TARGET: benchmarking Table Retrieval for Generative Tasks, Ji, Parameswaran, <u>Hulsebos</u>. Table Representation Learning workshop NeurIPS, 2024.

TARGET insights

	Question Answering						Fact Verification			Text-to-SQL					
	OTTQA			FeTaQA			TabFact			Spider			BIRD		
Method	R@10	S	SB	R@10	s	SB	R@10	S	P/R/F1	R@1	S	EX	R@ 1	S	EX
No context		-	0414	-	-	12,495		-	0.578/0.42/0.44		-	0	-	-	0
OTT-QA BM25	0.955	0.001	0.606	0.082	0.001	1.631	0.338	0.001	0.75/0.26/0.39	0.635	0.001	0.385	0.709	0.001	0.181
w/o table title	0.443	0.001	0.529	0.084	0.001	1.555	0.331	0.001	0.75/0.26/0.38	0.5	0.001	0.376	0.535	0.001	0.164
OTT-QA TF-IDF	0.950	0.001	0.425	0.083	0.001	1.639	0.336	0.001	0.75/0.26/0.38	0.622	0.001	0.474	0.640	0.001	0.227
w/o table title	0.43	0.001	0.593	0.083	0.001	1.527	0.322	0.001	0.75/0.25/0.37	0.492	0.001	0.376	0.491	0.001	0.164
LlamaIndex	0.458	0.354	0.507	0.435	0.396	13.745	0.827	0.297	0.73/0.34/0.47	0.735	0.198	0.559	0.937	0.228	0.311
OpenAI embedding	0.950	0.190	0.599	0.722	0.200	17.64	0.779	0.189	0.76/0.51/0.61	0.768	0.193	0.602	0.926	0.199	0.317
header only	<u>0.950</u>	0.189	0.61	<u>0.718</u>	0.18	17.66	<u>0.781</u>	0.187	0.75/0.48/0.58	0.833	0.175	0.646	0.958	0.191	0.323

- BM25/TF-IDF less effective than for text, only works with descriptive table name.
- Table rows can "distract" embeddings, particularly in RDBs as seen in practice.
- Generating summary/metadata can help, but not all tables easy to LLM-summarize.

Still much to explore...

- What is the right input of (meta)data to not "distract" embedding?
- How do we route to proper data source, interpret the task, etc?
- The reality in practice is much harder:
 - How do methods perform on more *challenging tasks* & *datasets*?
 - Closing semantic gap *e*(query) and *e*(table); most public datasets relatively "easy" match between query and tables.
 - Relational databases are large \rightarrow in-DB schema and table retrieval.

Roadmap for TARGET

Take aways...

- Tables are everywhere, serving high-value use-cases in e.g. gov, health, finance.
- Tables ≠ natural language: tables come with specific properties (e.g. relational).
- Capabilities of "foundation" models should extend to tables & relational DBs.
- For this, we need the **right data**, and the **right "tricks**".
- For any data analysis system, human or agentic; retrieval is key (e.g. tables, context).

madelonhulsebos.com, madelon@cwi.nl, @madelonhulsebos 😽 🛛

Hulsebos, M., Hu, K., Bakker M., et al. "Sherlock: A deep learning approach to semantic data type detection." ACM SIGKDD 2019. Hulsebos, M., Demiralp, C., Groth, P. "GitTables: A large-scale corpus of relational tables." SIGMOD 2023. Cong, T., Hulsebos M., Groth, P., Jagadish, H. "Observatory: Characterizing embeddings of relational tables." VLDB 2024. Ji, X., Parameswaran, A., Hulsebos., M. "TARGET: Benchmarking Table Retrieval for Generative Tasks." TRL @ NeurIPS 2024.