
Towards Robust Open-Domain Querying over

Madelon Hulsebos (CWI)
25 July 2025
SAP Business Al Retreat

Why tables?

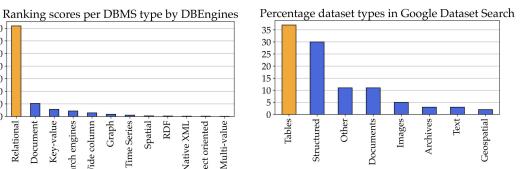
Tabular data:

- **Dominant** in data landscape
- **High-value** decisions in enterprise, government, finance, healthcare...
- Challenging in structure, relations, size, heterogeneity...

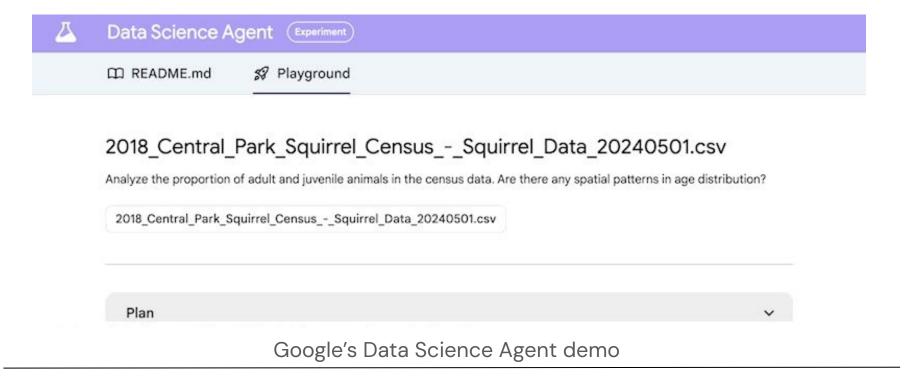
Yet... neural models mainly for text, images, and code.

60

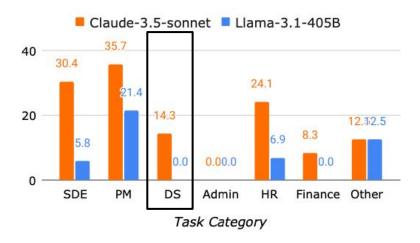
50 -40


30

Multi-value

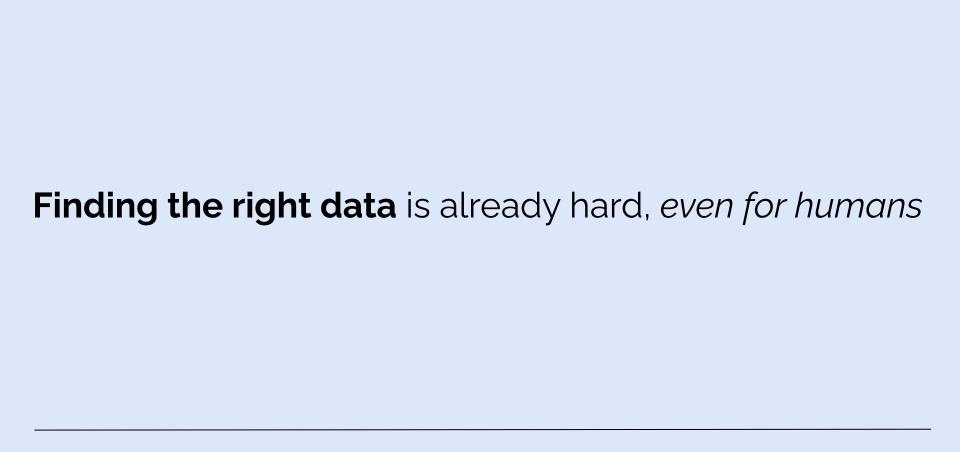

Spatial

Fime Series



We have LLM Agents now 💫!

Just "Throw" Agents at Tabular Data Science?

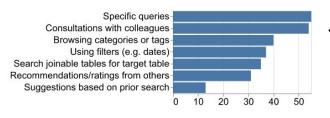


The Sad State of DS Agents...

(b) Success rate across task categories

	SDE (69 tasks)		PM (28 tasks)		DS (14	asks)	
Model	Success	Score	Success	Score	Success	Score	
			Closed r	nodel Al	Pls		
Claude-3.5-Sonnet	30.43	38.02	35.71	51.31	14.29	21.70	
Gemini-2.0-Flash	13.04	18.99	17.86	31.71	0.00	6.49	
GPT-4o	13.04	19.18	17.86	32.27	0.00	4.70	
Gemini-1.5-Pro	4.35	5.64	3.57	13.19	0.00	4.82	
Amazon-Nova-Pro-v1	2.90	6.07	3.57	12.54	0.00	3.27	
			Open-v	veight m	odels (
Llama-3.1-405b	5.80	11.33	21.43	35.62	0.00	5.42	
Llama-3.3-70b	11.59	16.49	7.14	19.83	0.00	4.70	
Qwen-2.5-72b	7.25	11.99	10.71	22.90	0.00	5.42	
Llama-3.1-70b	1.45	4.77	3.57	15.16	0.00	5.42	
Qwen-2-72b	2.90	3.68	0.00	7.44	0.00	4.70	

Why Is Dataset *Search* Still So Hard?


How systems facilitate dataset search

k1, k2, k3

Keywords that *perfectly align* with the dataset *needed but is unknown*.

How we actually search (survey insights)

"Identify the **problem, and the data for the problem**, ... then specific keyword or tag search. Also, identify **people** who have worked on **similar problems**..."

"Having so many tables, I ask more **experienced colleagues which ones are most inherent** to the analysis I need to do. I then navigate through the categories and tags to looks for others."

How we want to search

"Dataset to <**solve issue of ...**> with columns **<1,2,3,...>** on **<granularity desired>**"

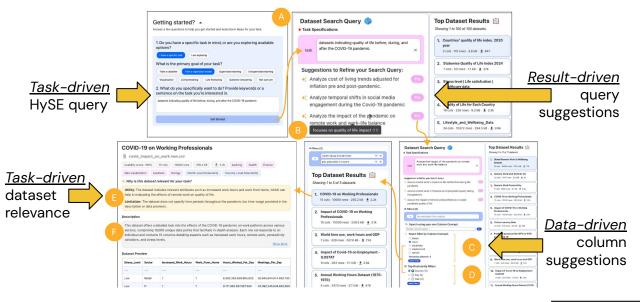
Task-driven Search Reduces Domain-Expert Reliance

Task query Q, instead of keywords:

"Dataset to <train an **ML model** to **forecast demand** for **drug types** across **suppliers**>, ..."

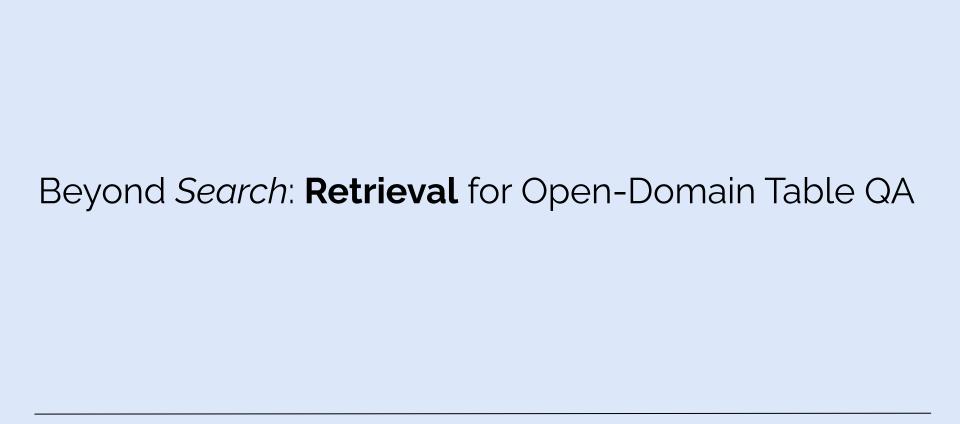
Search w/ <u>Hypothetical Schema Embeddings</u> (hyse):

1) generate hypothetical schema for task Q:


```
medication table: medication id, medication name, ...
sales table: medication id, supplier id, date, quantity, ...
```

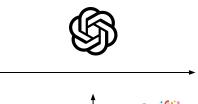
- 2) embed hypothetical schema
- 3) retrieve relevant tables from retrieval corpus based on embedding similarity

Preliminary results are promising!


Proactive Assistance for Dataset *Search* is Needed

Proactive assistance makes it easier to find more relevant results, with higher success rate.

Condition	Ease-of-use	Relevance	# Successes
(A) Kaggle	μ =3.08; σ =0.51	μ =3.25; σ =1.05	7 of 12
(B) Semantic Baseline	μ =3.75; σ =0.45	μ =3.25; σ =0.86	6 <i>of</i> 12
(C) DATASCOUT	μ =4.75; σ =0.45	μ =3.67; σ =0.78	10 of 12

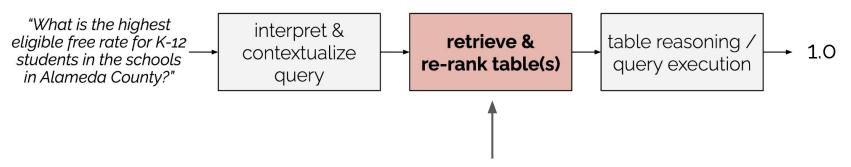


Asking domain-specific questions... to LLMs?

Question


What is the highest eligible free rate for K-12 students in the schools in Alameda County?

LLM response


"....To determine the highest free rate specifically in Alameda County schools, you'd generally need data from specific schools inthearea,..."

What about tables?

^{*}Generated with ChatGPT on 6 October 2024

Open-Domain Question Answering over Tables

The **TARGET** benchmarks studies Table Retrieval Mechanisms

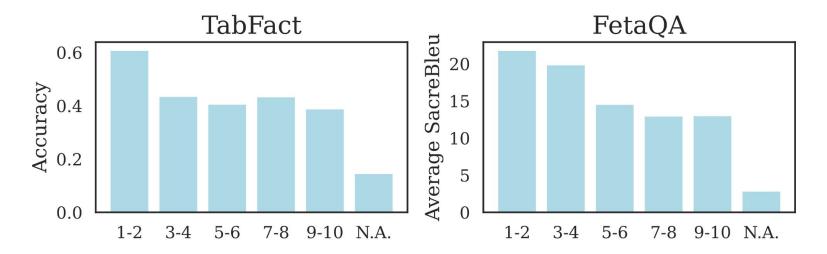
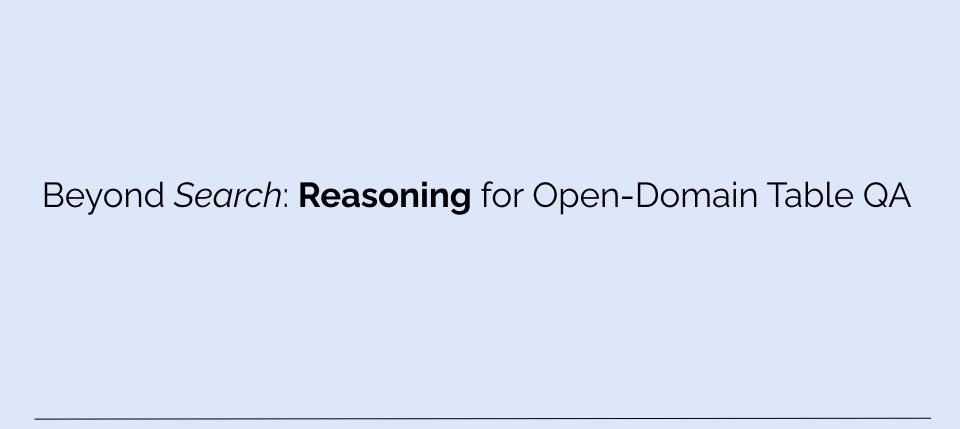
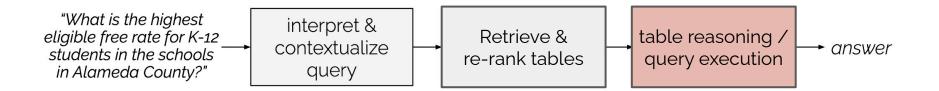

https://target-benchmark.github.io (pip install target_benchmark)

Table Retrieval in Open-Domain QA: Unsolved Problem

	Question Answering		Fact Ve	rification	Text-to-SQL					
	ОТ	TQA	FeTaQA		TabFact		Spider		BIRD	
Method	R@10	time (s)	R@10	time (s)	R@10	s	CR@10	time (s)	CR@10	time (s)
Sparse Lexical Repr. (BM25)	0.967	0.001	0.082	0.001	0.338	0.001	0.544	0.001	0.700	0.001
w/o table title	0.592	0.001	0.084	0.001	0.331	0.001	0.491	0.001	0.616	0.001
Sparse Lexical Repr. (TF-IDF)	0.963	0.001	0.083	0.001	0.336	0.001	0.541	0.001	0.586	0.001
w/o table title	0.583	0.001	0.039	0.001	0.322	0.001	0.489	0.001	0.613	0.001
Dense Metadata Embedding	0.820	0.297	0.436	0.396	0.469	0.354	0.621	0.024	0.940	0.014
Dense Table Embedding	0.963	0.001	0.741	0.001	0.824	0.001	0.657	0.001	0.961	0.003
column names only	0.658	0.001	0.208	0.001	0.506	0.001	0.648	0.001	0.932	0.003
Dense Row-level Embedding	0.951	0.267	<u>0.711</u>	0.394	0.848	0.384	0.665	6.077	N/A	N/A


- BM25/TF-IDF less effective than for text, only works with descriptive table name.
- Generating summary/metadata can help, but not all tables easy to LLM-summarize.
- Row-level retrieval generally most effective, but not feasible in practice (large tables)

Retrieval? Isn't large context all you need?



No.

Much work to be done... stay tuned!

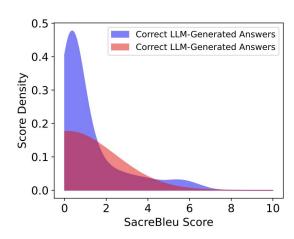
Open-Domain **Querying** over Tables

Typical downstream tasks:

- SQL generation (QA),
- Tabular LLM reasoning (QA),
- Fact verification

SQL is great, but reality is... LLMs are used, as well

First, we need to use proper metrics!


Problem: We have a GT value to compare with free-form text

Question: How long has the team that qualified for the 1999 FIFA Confederations Cup in June existed?

Tuestion from tong has the team that quartica for the 1999 11111 Confederations Cup in state existe				
Generated answer	Answer	SB score	BS score	LLM
The team that qualified for the 1999 FIFA Confed-	since 1908	0.5	0.81	
erations Cup in June was Germany, who secured				
their qualification on 30 June 1996. To determine				
how long they had existed as a team by June 1999:				
The Germany national football team was officially				
founded in 1908. From 1908 to 1999 is 91 years.				
Answer: The Germany national team had existed				
for 91 years by June 1999.				
The team that qualified for the 1999 FIFA Confed-	since 1908	1.0	0.82	
erations Cup in June was Germany. Germany has				
existed as a national team since 1974, so by June				
1999, they had existed for 25 years.				

CWI

Metrics distribution SacreBleu

Scores of incorrect answers **inseparable** from correct answers

So, can LLMs reason over tables?

Evaluation of table **lookup queries** with Qwen2.5:

- Multiple-choice eval (A/B/C): 86%
- LLM-as-a-judge: 8.1% ← realistic performance

Reasoning with DeepSeek:

"Wait no—the data doesn't show that... Wait I'm getting confused."

In an ideal relational world:

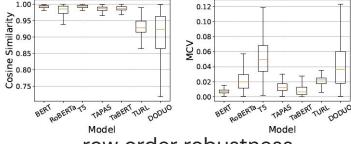
A relation then consists of a set of tuples, each tuple having the same set of attributes. If the domains are all simple, such a relation has a tabular representation with the following properties.

- (1) There is no duplication of rows (tuples).
- Row order is insignificant.
- (3) Column (attribute) order is insignificant.
- (4) All table entries are atomic values.

For "average" queries

Model	Accuracy as-is	With duplicates
qwen2.5	36%	20%

Data cleaning is relevant beyond predictive tabular ML!


Do Table Embeddings Capture Relational Properties?

Studying neural **table embeddings** through **Codd's relational data model**:

A *relation* then consists of a set of tuples, each tuple having the same set of attributes. If the domains are all simple, such a relation has a tabular representation with the following properties.

- (1) There is no duplication of rows (tuples).
- (2) Row order is insignificant.
- (3) Column (attribute) order is insignificant.
- (4) All table entries are atomic values.

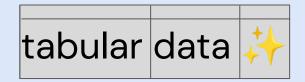
Measure by avg cosine similarity of col embeddings across row permutations.

row order robustness

Teach LLMs the relational model but anticipate real-world messiness!

How to move forward?

Some thoughts:


Can we just throw LLM agents to solve data science?

No, table-tuned and table-native models are key.

- Do we need a single (real) tabular foundation model, that does everything?
 Imho, no.
- What are key open challenges?

Table-native models, retrieval, open-domain *text-to-sql*, unifying pred & reas, *efficient* pred TFMs, integrating knowledge in DS.

Towards Robust Open-Domain Querying over

madelon@cwi.nl!
trl-lab.github.io