
Representation Learning
and Generative Models

for tabular data ✨
Madelon Hulsebos (CWI)

TU Berlin
29 January

Agenda of today’s lecture

- Why ML for tables?
- Table Representation Learning

- Background
- TRL for “data work”
- TRL for data insights

- Generative models and tabular data
- Representation learning versus generative models
- LLMs for (tabular) predictive modeling
- Agentic data science systems

- Where are we, and where do we go?

Recap

ML pipelines: from raw data to analysis insights of ML model predictions.

From “Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI, Sambasivan et al., SIGCHI, 2021

→ what happens here, has huge impact!80% data work

20% model work

Breaking down a Data Science pipeline

π✅

❌σ

…. ��
RETRIEVE PROCESS ANALYSE

f ()= y
USE

AR = 1M

STORE

↑↓

● indexing
● query execution
● compression

● search
● validation
● exploration

● transformation
● augmentation
● cleaning

● exploration
● statistics
● visualization

● business intelligence
● predictive modeling
● ML observability

So much to think about!

So much to go wrong!

Why would this work?

- “everyone is doing this” = we have data, e.g. CSVs + jupyter notebooks
- If we have data, we can “learn”!

Then, I realized: everyone is doing this….

What if…. we could use ML to help us do the data work, for ML?

?

→ ML for Data Engineering for ML

→ let’s make data work, model work

Automating data work for ML (predictive modeling)

The ambition…

π✅

❌σ

…. ��
RETRIEVE PROCESS ANALYSE

f ()= y
USE

AR = 1M

STORE

↑↓

● indexing
● query execution
● compression

● search
● validation
● exploration

● transformation
● augmentation
● cleaning

● aggregation
● statistics
● visualization

● business intelligence
● predictive modeling
● ML observability

“data work”

Why “ML for Tables”?

From language and vision models → table models

✓ ？✓

Tables are Everywhere

For a reason: tables serve high-value applications, e.g. data analysis & predictive modeling

Data modalities in the real-world data landscape

10

A Challenge of Heterogeneity…

Tables come in all shapes, semantics and sizes…

Challenging… how to deal with variation?

Tables store lots of structured, fresh, domain data!

Representation Learning
for tabular data

Table Representation Learning

t1

t2

t3

input
i

j
k

Map each table to some consistent input.
Learn some representation that helps
detect patterns relevant to given task(s).

TRL for data work

Table Semantics Are All You Need

A table’s understanding comes through its columns.

ML task:

- given table T,
- predict semantic column types C,
- with each c in C from preset ontology.

 name sal cntr

name salary country

Capitalize “name” columns Plot “country” data

cntrname salaryname salary cntr name

Xi

Carl

Sara

naam status land

Inform semantic join on tables

name

Xi

carl

sara

Semantic column types dictate operations sensible to perform on them:

Semantic column types

Hulsebos et al., Sherlock: A deep learning approach to semantic data type detection. KDD, 2019.

Starting point: treat a column as set of strings

Word embeddings: represent “words” in
numeric vector space reflecting semantics

Fast Forward to Transformers
- Bottleneck of existing Deep Learning models:

- Don’t take in much context (1 input column -> 1 output label)
- Not very scalable

Start of LMs.. read!

- Transformer architecture: attention mechanism enables
“contextual learning” in parallel!

Table Model

INPUT OUTPUT

question
“...?”

embeddings
[[1,24],[6,74],[9,10]]
[1,24,955,101]

label (tuned model)
Yes
5 January 2022

table

Example task: question answering over tables

Transformers for Tables
High level pipeline

Based on: Models and Practice of Neural Table Representations. Hulsebos, Deng, Sun, & Papotti. SIGMOD 2023.

More context, more efficient -> lower level training!

“Table Model”: TURL

Deng et al., Table Understanding through Representation Learning, 2023, VLDB

Low level inputs
and architecture

Transformers for Tables
Input: from Table to Tokens

- Sample, serialize, and tokenize(+pad) table.
- Table can be aligned w/ metadata or other input (if any).
- Many variations for serialization (e.g. row-wise, w/ SEP tokens etc).

[1, 2, 3, 4, 5, 6, …, M]

[col : col1|…|colN row1 :
val1|val2|…|valN row2 : …]

[token1, token2, token3, …, tokenM]

“abc dz”?

[abc dz?] SERIALIZE

TOKENIZE

TOKEN → TOKEN ID

Token ID -> token embedding -> embedding is learned

- Attention learns across all tokens (context) in input text.
- But Mrinal has not much to do with Goopy → structural attention:
→ Structural attention: vertical = across column or matrix = across row/col (TURL).

Transformers for Tables
Architecture: Learning Adjusted for Table Structure

Transformers for Tables
Pre-training: Table-specific Tasks

- Pre-training tasks:
- Typical: recovering (predicting) column names or cell values.
- Efficient: (synthesized) SQL execution (↓ TaPEx [1]).

*Liu et al, TAPEX: Table pre-training via learning a neural SQL executor, ICLR, 2022.

Pretraining because the goal is to obtain “generic model” that can
be “fine-tuned” for various tasks (using “embeddings” of inputs)

Transformers for Tables
Output: Embeddings or Predictions

PredictionsEmbeddings

Typically aggregated from token-level embeddings
to cell/row/col level

These are “fine-tuned” from embeddings
to explicit labels

Representation Learning for Join Discovery

Task: given input table, find joinable tables for given column.

But embeddings used for retrieval, correlation prediction, data validation, etc.

Cong et al., WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses, CIDR, 2023

TRL for data insights

TRL for Question Answering over Tables

TaPas: TRL model for QA predicting operator + cell span

Herzig et al, TAPAS: Weakly Supervised Table Parsing via Pre-training, ACL, 2020.

Works Well… for Basic Cases

Example with TaPas:

How old is Leonardo Di Caprio? AVERAGE 45
What is Leonardo Di Caprio his age? AVERAGE 45
What is the sum of the number of movies? SUM 87, 53, 69 = 209

Actor Age Number of movies
Brad Pitt 56 87

Leonardo Di Caprio 45 53

George Clooney 59 69

How many movies are there in total? COUNT 87, 53, 69 = 3

Do Table Embeddings capture Relational Properties?

Tables ≠ natural language ?

Studying neural table embeddings through Codd’s relational model.

Observatory: Characterizing Relational Table Embeddings. Cong, Hulsebos, Sun, Groth, Jagadish, VLDB, 2024.

Example Property: Functional Dependencies

Given table with FD: X=country → Y=continent

We argue that:

- FD relations interpretable as translation
between embeddings E(𝜋𝑋 (𝑠)) and E(𝜋𝑌 (𝑠))

- Model preserves FD if 𝑑(E(𝜋𝑋(𝑠)), E(𝜋𝑌(𝑠))) = 𝑑(E(𝜋𝑋(𝑡)), E(𝜋𝑌(𝑡)))
where d preserves magnitude+direction (L1/L2-norm).

Netherlands

Europe
d1

Netherlands

Europe
d2

- Intuitively:

Turns out, most models do not preserve FDs!

Impact downstream tasks: row shuffling affects 34% semantic column types!

Measure by avg cosine similarity of col
embeddings across row permutations.

row order robustness

We also consider simpler properties:

Current Architectures Fall Short…

Generative Models
for tabular data

Representation Learning vs Generative Models

To generating answers…!

- Input: table, context, query (question / task / anything)
- Output: anything (e.g. code, or explicit answers)
- Underlying mechanism: next-token prediction

From predicting labels, e.g.:

- semantic types / relations between columns,
- cell span + aggregations (QA),
- True or False (fact verification).

“Underlying” because “underlying” LM might be “tuned” to predict discrete labels.

Can LLMs help with data discovery?

Kayali et al., “Chorus: Foundation Models for Unified Data Discovery and Exploration”

Typical format:
- Instructions
- Example (input,

output)

Just use generative model? Sherlock outperforms LLMs.

LLM analyses show tables best formatted w HTML tags, but many challenges.
Messy data? Large tables? Full DBs? Non-descriptive headers? Numeric data?

Problem: pretrained TRL models poor OOD performance on col type prediction.

33

Transformers Not Always SOTA

Beyond SQL: feature engineering!

General approach:

Example, binning:

Automated features helpful, but minimal gain

Generating feature pool,
prune feature candidates

No feature engineering at all…

What’s going on?

Language models engineer too many simple features…

Küken et al., Large Language Models Engineer Too Many Simple Features for Tabular Data,
TRL workshop @ NeurIPS, 2024

Better with domain expertise? Or much better training (data, tricks)….

Make LMs significantly better for tabular tasks?

Train LLMs on tabular tasks, at scale:

- GPT-based model trained on 86B tokens
- >593.8K table+language samples for training encoder
- >2.36M query+table+output tuples for fine-tuning

Scale of evaluation:

- 23 benchmarking metrics
- TableGPT2 7B model: +35.20% improvement
- TableGPT2 72B model: +49.32% improvement

Impression of scale

LLMs for predictive modeling

Problem setting

f(X) → y

Where X are features, and y is the target to predict.

Quite similar to missing value imputation, where y_test are missing values?

General approach

Given generative model M and a table T:

- Serialize rows in T into “sentences”
- Template the prediction “task”
- Fine-tune M on train set (where to-be-predicted labels are provided)
- Evaluate on test set (labels to-be-predicted)

→ Still “generation”, so prone to errors in hallucination, formatting, etc.

TableLLM: few-shot LLMs for predictive modeling

TapTap: Language Models for Predictive Models

Note: data augmentation with TapTap, improving robustness to invariant row/col order!

Agentic Data Science

Agentic Systems for Data Science

“Agentic”: the LLM-system has some “agency”, i.e. it plans what to do.

Pipeline of 8 steps, automated! (8, but didn’t even train/eval an ML model)

One step, e.g. “data cleaning”

Generate Plan Generate Code Execute Code Check Result

Fix Code

Per step, can be SQL,
python (pandas,
scikit-learn, ..), etc

Data cleaning:
- Remove invalid values
- Remove outliers
- Impute missing values
- …

Nice, an LLM can reason about what
“invalid” would mean, examples?

What can possibly go wrong?

Plan Generate Execute Check

Fix

Plan Generate Execute Check

Fix

Plan Generate Execute Check

Fix

Plan Generate Execute Check

Fix

Plan Generate Execute Check

Fix

Plan Generate Execute Check

Fix

Validate data Integrate data

Summarize data Aggregate data

Clean data

Visualize data

Analyze the proportion of adult and juvenile animals in the census data.
Are there any spatial patterns in age distribution?

How do agentic DS systems perform?

Closed model APIs

Open-weight models

Xu, Song, Li, et al., “TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks”, 2024.

Realistic data science (DS) task

Some suggestions…

- Errors are costly!
- Need for human interaction - “how” is an open question (reviewing code 🤔?)
- Better interpretation (refinement) of input query.

- Generalizability is key
- Robustness to variation (data, workflow needs)
- Need to acknowledge limitations (current demo mode: “can do, will do!”)

But… promising!

Key take-aways

- Potential of TRL & generative models for tables for data work!
- LLMs can do predictive modeling, reasonably
- We’re moving towards agentic Data Science systems

More attention needed to:

- We need representative and large-scale datasets (hard to get!)
- We need specialized “tricks” (e.g. architecture, pretraining, tokenization, etc)
- We need better domain context and ways to fetch human guidance

Got interested?

Join us for a workshop on this topic on 27 February in Amsterdam:

ELLIS workshop on Representation Learning
and Generative Models for Structured Data

https://sites.google.com/view/rl-and-gm-for-sd/home
Or check: https://www.madelonhulsebos.com/upcoming/

https://sites.google.com/view/rl-and-gm-for-sd/home

Thank you!

https://www.madelonhulsebos.com
@madelonhulsebos on Bluesky

Madelon Hulsebos
TRL Lab @ CWI

https://www.madelonhulsebos.com

