

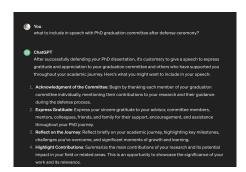
Table Representation Learning

UW Seattle May 24th, 2024

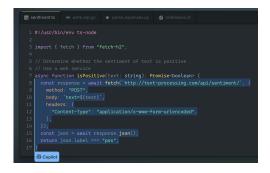
The Impressive Capabilities of Transformers

Transformers leveraged for applications over images, text, code:

Generates images of dogs



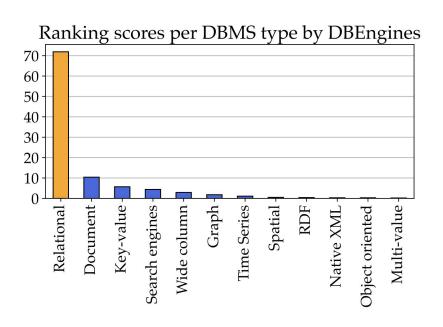
Helps writing graduation speech

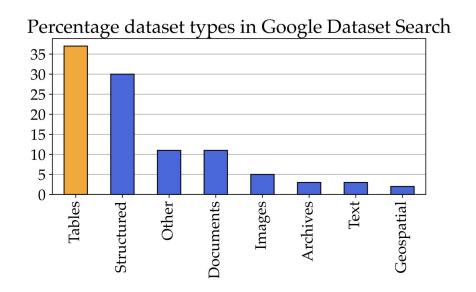


Completes code

What about **tables**?

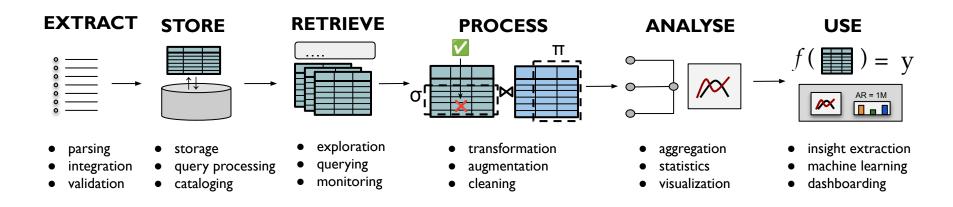
Tables Dominate the Data Landscape





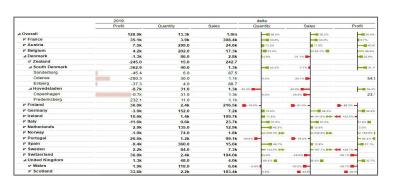
Application Potential of Table Representations

Many tasks in **high-value use-cases** operate over tables, e.g. *data analytics*.

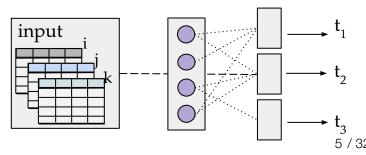


Rich and challenging!

Tables come with diversity in structure, dimensions, content, and semantics...



Goal TRL: map tables to some consistent input. Learn some representation that helps detect patterns relevant to given task(s).



Outline for today

Images, videos, text...

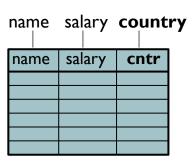
Tables

- 1. Neural Models for Table Understanding
- Resources for Table Representation Learning
- 3. Retrieval systems for structured data

Neural Models for **Table Understanding**

Column type detection: why?

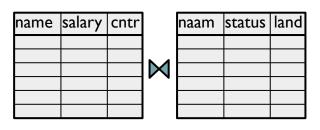
Essential understanding of a table comes through its columns.



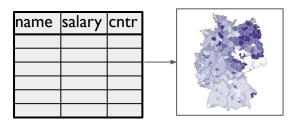
Looks easy, but....

- Undescriptive header?
- Messy and heterogeneous values?
- Unknown types?

Semantic column types dictate operations to perform on them:



name	name	
Xi		Xi
carl	├	Carl
sara		Sara



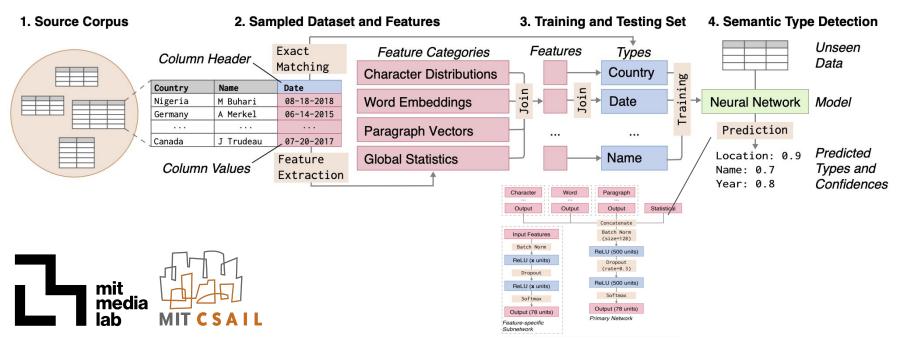
Join tables on "name" and "country" columns

Capitalize "name" columns

Plot "country" data

Sherlock: Column Type Detection with DL

Prior: string matching (col name/values) w/ regex or dict: robust? scale? accuracy?



Sherlock: A Deep Learning Approach to Semantic Data Type Detection. Hulsebos, Hu, Bakker, et al., KDD 2019.

How well does **Sherlock** detect types?

78 semantic types (name, address, etc).

Method	F ₁ Score	Runtime (s)	Size (Mb)
	Machine Lear	ning	
Sherlock	0.89	0.42 (±0.01)	6.2
Decision tree	0.76	$0.26 (\pm 0.01)$	59.1
Random forest	0.84	$0.26 (\pm 0.01)$	760.4
	Matching-bo	ised	
Dictionary	0.16	0.01 (±0.03)	0.5
Regular expression	0.04	$0.01 (\pm 0.03)$	0.01
Cı	owdsourced An	notations	
Consensus	0.32 (±0.02)	33.74 (±0.86)	_

Examples	True type	Predicted type
Lo	w Precision	
81, 13, 3, 1	Rank	Sales
316, 481, 426, 1, 223	Plays	Sales
\$, \$\$, \$\$\$, \$\$\$\$, \$\$\$\$\$	Symbol	Sales
I	ow Recall	
#1, #2, #3, #4, #5, #6	Ranking	Rank
3, 6, 21, 34, 29, 36, 54	Ranking	Plays
1st, 2nd, 3rd, 4th, 5th	Ranking	Position

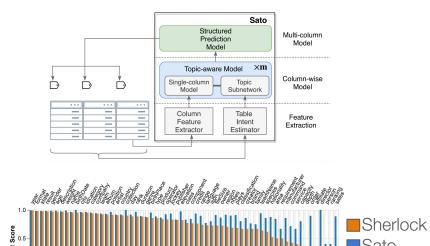
Challenges:

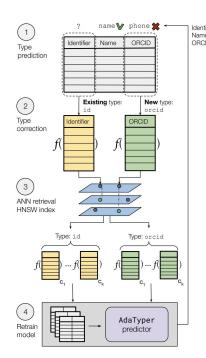
- Numeric data
- Non-mutually exclusive types

Deployed (often in healthcare), benchmarked against, and extended...

Extending Sherlock: Contextual and Adaptive Models

SATO: condition Sherlock-predicted column type on preds of neighbor columns





AdaTyper: adapt base type detection model by generating labeled samples from example columns

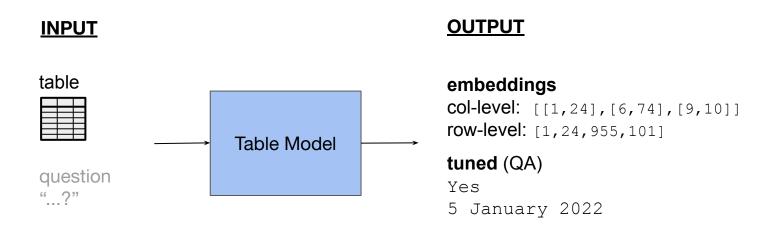
Туре	regex	dictionary		AdaTyp	er
			i=0	i=5	ΔF1
first name	0	0.508	-	0.580	+0.580
postal code	0.108	0	-	0.068	+0.068
city	0.195	0	0.296	0.387	+0.091
gender	0	0.098	0.340	0.341	+0.001

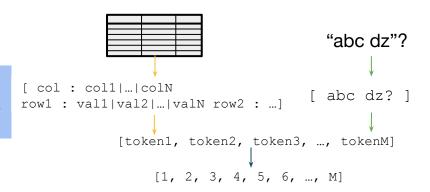
Effective w/ only few examples But numeric/pattern? Regex..

Sato: Contextual Semantic Type Detection in Tables. Zhang, Suhara, Li, <u>Hulsebos</u> et al, VLDB, 2020. AdaTyper: Adaptive Semantic Column Type Detection. <u>Hulsebos</u> et al, arxiv, 2023.

Then came **Transformers for Tables**

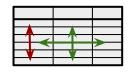
Transformers for Tables





Serialize (e.g. row-wise or col-wise)Merge tokens table & context (e.g queries)Map tokens to "token IDs"

Structured attention:



Vertical Matrix

Pre-training tasks:

Default: recover column names or cell values.

Efficient: synthetized SQL execution.

Embeddings:

token-level agg to cell-, col-, row-level.

Fine-tuning:

Predicting cells+operators, SQL, etc

Transformers Not Always SOTA...

<u>Problem</u>: pretrained table models poor OOD performance (e.g. col type prediction).

Just use GPT for col type prediction? [1]

				_
	F_1 -score	Precision	Recall	
DoDuo-VizNet*	0.900	90.3%	89.9%	-
Sherlock*	0.930	92.2%	93.1%	Specific DL mode
TaBERT	0.380	38.9%	38.3%	-
DoDuo-Wiki	0.815	82.6%	81.4%	
Chorus	0.865	90.1%	86.7%	← GPT-based

LLMs for tables: Overkill or Unutilized Potential?

Sherlock col type pred model:

Paragraph

Softmax

Output (78 units)

Primary Network

Word

Character

ReLU (x units)

Softmax

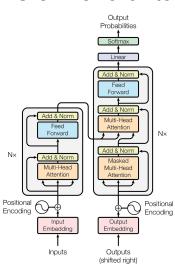
Output (78 units)

Feature-specific

Subnetwork

Output Output Statistical Output **hundreds** of params Batch Norm Input Features (size=128) Batch Norm ReLU (500 units) **VS** ReLU (x units) Dropout (rate=0.3) billions/trillions of params Dropout ReLU (500 units)

Transformer architecture:



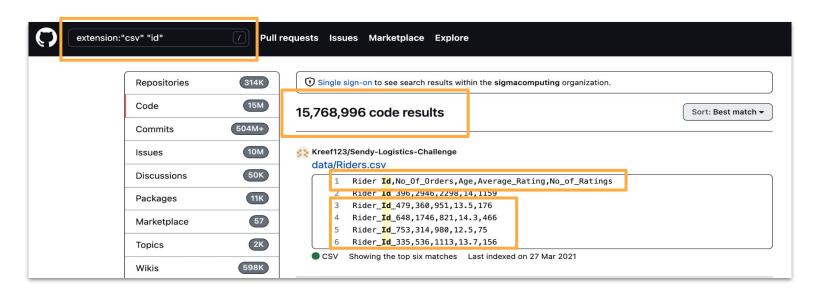
But LLMs are promising... if they'd work well for tables:

How to handle messy data, large tables, full DBs, vague headers, numeric data?

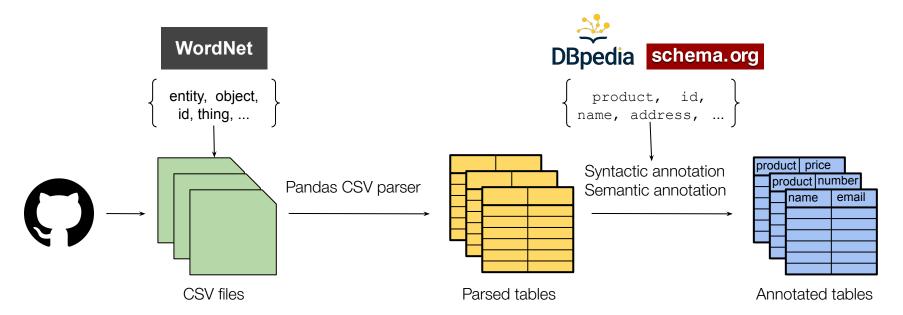
Resources for TRL

What Data Do We Need?

- Web/WikiTables → Web applications. Web tables * DB tables...
- Data tasks on offline tables? GitHub as a data source?



GitTables



Properties and Use-cases of GitTables

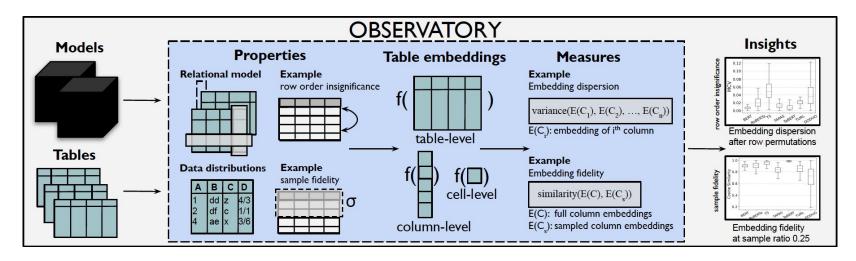
- >1M tables and 800K CSV files.
- More representative: wider+taller, and IDs most common attribute.
- Usage shown for semantic column type detection and schema completion:

Header prefix	Suggested completion
payment_id, customer_id id, company id, name, location	review_id, product_id, product_parent, product_title, ReceivablePaymentHeader, ReceivablePayment, Status, Customer, BankEntity, phone, email, uid, active, ad_organization_id,

Also used for join discovery, CSV parsing, KG enhancement, etc.

Do Current Models Capture Relational Properties?

Neural table embeddings through the lens of Codd's relational model.



Example Property: Functional Dependencies

Given table T with FD: $X=country \rightarrow Y=continent$

We argue that:

FD relation interpretable as *translation* between embeddings $E(\pi X(s))$ and $E(\pi Y(s))$

ID	name	country	continent
1	Kathryn	Netherlands	Europe
2	Oscar	Netherlands	Europe
3	Lee	Canada	North America
4	Roxanne	USA	North America
5	Fern	Netherlands	Europe
6	Raphael	USA	North America
7	Rob	USA	North America
8	Ismail	Canada	North America

Model f preserves FD if $d(E(\pi X(s)), E(\pi Y(s))) = d(E(\pi X(t)), E(\pi Y(t)))$ where d preserves norm+direction (L1/L2-norm).

Measure the average group-wise variance over all n "FD-groups": $\overline{S^2} = \frac{1}{n} \sum_{j=1}^{n} \frac{\sum_{i=1}^{m_{\mathcal{G}_j}} ||d_{ji} - \overline{d_j}||_2^2}{m_{\mathcal{G}_j} - 1}$

$$\overline{S^2} = \frac{1}{n} \sum_{j=1}^{n} \frac{\sum_{i=1}^{m_{\mathcal{G}_j}} ||d_{ji} - \overline{d_j}||_2^2}{m_{\mathcal{G}_j} - 1}$$

 $\overline{S^2}$ approaches 0 if the translation between group-wise FD value pairs in X (country) and Y (continent) is approx. equal. At least $\overline{S^2}$ is smaller than in non-FD value pairs.

Current Architectures Often Fall Short...

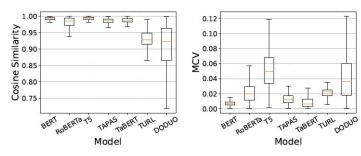
Turns out, most models do not preserve FDs!

Also more fundamental properties:

A *relation* then consists of a set of tuples, each tuple having the same set of attributes. If the domains are all simple, such a relation has a tabular representation with the following properties.

- (1) There is no duplication of rows (tuples).
- (2) Row order is insignificant.
- (3) Column (attribute) order is insignificant.
- (4) All table entries are atomic values.

Measure by avg cosine similarity of col embeddings across row permutations.



row order robustness

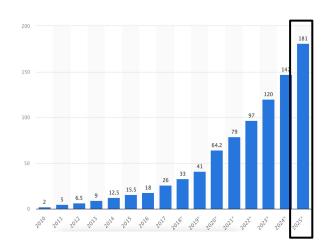
Impact on downstream tasks! Row shuffling affects 34% col type predictions.

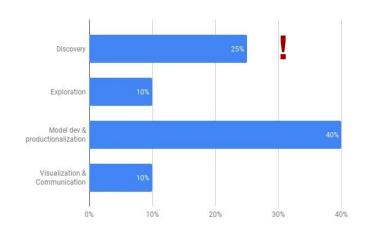
[2] Extending the Database Relational Model to Capture More Meaning, Codd, 1979.

Embeddings -> retrieval systems for structured data

Use-case: dataset search for analytics/ML

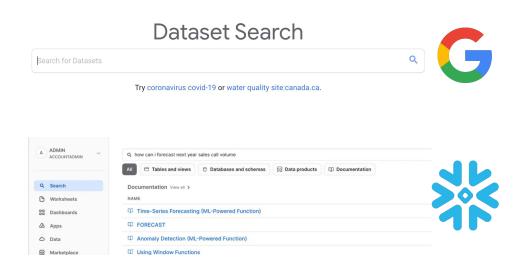
Immense growth of data → desire for insights Finding the right dataset = still time-consuming





Research versus Practice

Systems in **industry** vs focus in **research**



"Basic" dataset search (e.g. keyword search)

Method	Task	Rep. Learning	ANN Index
Octopus [18]	KS	X	X
G.D.S. [2]	KS	X	X
Aurum [13]	KS	X	LSH
LSH-Ensemble [3]	Join	×	LSH
Juneau [4]	Join	X	X
JOSIE [5]	Join	X	X
MATE [6]	Join	X	XASH
DeepJoin [7]	Join	V	HNSW
$D^{3}L$ [14]	Union, Join	1	LSH
Starmie [8]	Union, Join	V	LSH, HNSW
TUS [9]	Union	I	LSH
SANTOS [10]	Union	X	X
TURL [12]	TU	V	X
Sherlock [11]	TU	V	X
SATO [19]	TU	V	X

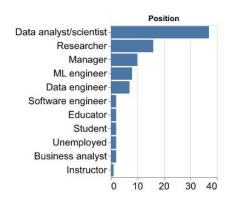
Majority research on data augmentation

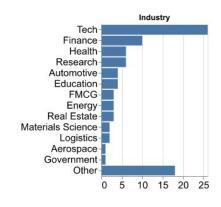
Basic Dataset Search is not a Solved Problem!

We asked ourselves: why is dataset search still so hard in practice?

89 data practitioners!!

recruited through social media & mailing lists:





We asked:

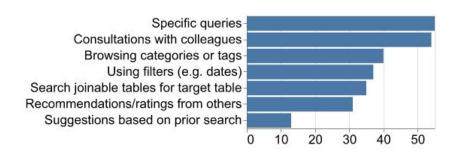
- What and how they search?
- What challenges they face?
- How they want to search?

"It Took Longer than I was Expecting:" Why is Dataset Search Still so Hard?. Hulsebos, et al, HILDA@SIGMOD, 2024.

Practitioner's perspective: what and how they search

79% searches for **initial dataset**, 52% for **data enrichment**.

How do you search?

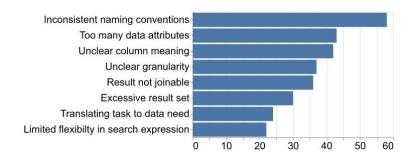


"Identify the **problem and the data for the problem**, ... then specific keyword or tag search. Also, **identify people** who have worked on similar problems..."

"Having **so many tables**, I ask more experienced colleagues **which ones are most inherent to the analysis** I need to do. I then navigate through the categories and tags to looks for others."

Practitioner's perspective: key challenges

Key challenges with existing systems?



"The biggest challenge I've noticed is **messy variable naming** - it takes me a long time to unpack what each variable means...."

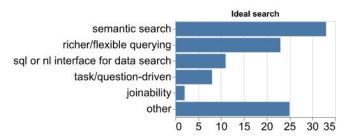
"Categorical level of detailing is required, which isn't possible now."

"There are too many table results after the initial search...."

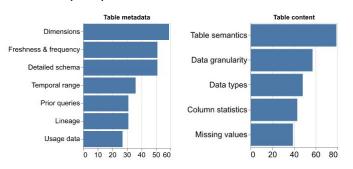
"Not many features to search/query keywords, a lot of times changing query still renders same data results..."

Practitioner's perspective: ideal search systems

What should search systems facilitate?



What properties to search over?



"Topic model search results, based on sentence similarity with the dataset description."

"Ideally I would have something across all of the various data sources and tables and be able to use SQL (or a trustable NLP solution) and pull all relevant data and metadata."

"Show me **product usage** datasets where the main fact table is **event-level usage** data with **hundreds of millions** of records and there are dimension **tables for user and account**."

"Dataset to **<solve issue of ...>** with columns **<1**,2,3,...> on **<granularity desired>**"

Desiderata for Dataset Search

<u>Task-driven</u>: explicit **data needs often unknown** requiring back-and-forths w/ experts

Hybrid: search spans multiple "views" of a table; raw metadata + embeddings

<u>Iterative</u>: data search queries **don't fit a search bar**; complex process

Comprehensible and diverse results: result sets hard to digest and navigate

Key takeaways...

- **Tables prevalent** in the data landscape, especially enterprises (*eg* for analytics).
- Capabilities of transformer should extend beyond images & text -> tables & DBs.
- Pre-train & tune table models on **representative data** (eg GitTables).
- Tables ≠ natural language: specific challenges and properties (Observatory).
- Important applications of table embeddings, e.g. **retrieval systems**.

Interested?

- Reach out: <u>madelon@berkeley.edu</u>
- TRL papers/resources: <u>madelonhulsebos.com/trl</u>
- Table Representation Learning workshop @ NeurlPS 2024??

